Estimate parameters of ARX, ARIX, AR, or ARI model
collapse all in page
Syntax
sys = arx(tt,[na nb nk])
sys = arx(u,y,[na nb nk])
sys = arx(data,[na nb nk])
sys = arx(___,Name,Value)
sys = arx(___,opt)
[sys,ic] = arx(___)
Description
Estimate AR or ARX Model
example
sys = arx(tt,[na nb nk])
estimates the parameters of an ARX or an AR idpoly model sys
using the data contained in the variables of timetable tt
. The software uses the first Nu variables as inputs and the next Ny variables as outputs, where Nu and Ny are determined from the dimensions of nb
and na
, respectively.
For AR models, which have no input signals, use sys = arx(tt,na)
. In this case, the software fits the model using the first Ny variables.
arx
performs the estimation using a least-squares method and the polynomial orders specified in [na nb nk]
. The model properties include covariances (parameter uncertainties) and goodness of fit between the estimated and measured data.
To select specific input and output channels from tt
, use name-value syntax to set 'InputName' and 'OutputName' to the corresponding timetable variable names.
sys = arx(u,y,[na nb nk])
uses the time-domain input and output signals in the comma-separated matrices u
,y
. The software assumes that the data sample time is 1 second. To change the sample time, set Ts using name-value syntax.
example
sys = arx(data,[na nb nk])
uses the time-domain or frequency-domain data in the data object data
. Use this syntax especially when you want to estimate a model using frequency-domain or frequency-response data, or when you want to take advantage of the additional information, such as data sample time or experiment labeling, that data objects provide.
Specify Additional Options
example
sys = arx(___,Name,Value)
specifies additional options using one or more name-value pair arguments. For instance, using the name-value pair argument 'IntegrateNoise',1
estimates an ARIX or ARI structure model, which is useful for systems with nonstationary disturbances. You can use this syntax with any of the previous input-argument combinations.
example
sys = arx(___,opt)
specifies estimation options using the option set opt
.
Return Estimated Initial Conditions
example
[sys,ic] = arx(___)
returns the estimated initial conditions as an initialCondition object. Use this syntax if you plan to simulate or predict the model response using the same estimation input data and then compare the response with the same estimation output data. Incorporating the initial conditions yields a better match during the first part of the simulation.
Examples
collapse all
ARX Model
Open Live Script
Generate output data based on a specified ARX model and use the output data to estimate the model.
Specify a polynomial model sys0
with the ARX structure. The model includes an input delay of one sample, expressed as a leading zero in the B
polynomial.
A = [1 -1.5 0.7];B = [0 1 0.5];sys0 = idpoly(A,B);
Generate a measured input signal u
that contains random binary noise and an error signal e
that contains normally distributed noise. With these signals, simulate the measured output signal y
of sys0
.
u = iddata([],idinput(300,'rbs'));e = iddata([],randn(300,1));y = sim(sys0,[u e]);
Combine y
and u
into a single iddata
object z
. Estimate a new ARX model using z
and the same polynomial orders and input delay as the original model.
z = [y,u];sys = arx(z,[2 2 1])
sys =Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t) A(z) = 1 - 1.524 z^-1 + 0.7134 z^-2 B(z) = z^-1 + 0.4748 z^-2 Sample time: 1 seconds Parameterization: Polynomial orders: na=2 nb=2 nk=1 Number of free coefficients: 4 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.Status: Estimated using ARX on time domain data "sys0". Fit to estimation data: 81.36% (prediction focus)FPE: 1.025, MSE: 0.9846
The output displays the polynomial containing the estimated parameters alongside other estimation details. Under Status
, Fit to estimation data
shows that the estimated model has 1-step-ahead prediction accuracy above 80%.
AR Model
Open Live Script
Estimate a time-series AR model using the arx
function. An AR model has no measured input.
Load the data, which is in a timetable that contains the time series tt9
with noise.
load sdata9 tt9
Estimate a fourth-order AR model by specifying only the na
order in [na nb nk]
.
sys = arx(tt9,4);
Examine the estimated A polynomial parameters and the fit of the estimate to the data.
param = sys.Report.Parameters.ParVector
param = 4×1 -0.7923 -0.4780 -0.0921 0.4698
fit = sys.Report.Fit.FitPercent
fit = 79.4835
ARIX Model
Open Live Script
Estimate the parameters of an ARIX model. An ARIX model is an ARX model with integrated noise.
Specify a polynomial model sys0
with an ARX structure. The model includes an input delay of one sample, expressed as a leading zero in B
.
A = [1 -1.5 0.7];B = [0 1 0.5];sys0 = idpoly(A,B);
Simulate the output signal of sys0
using the random binary input signal u
and the normally distributed error signal e
.
u = iddata([],idinput(300,'rbs'));e = iddata([],randn(300,1));y = sim(sys0,[u e]);
Integrate the output signal and store the result yi
in the iddata
object zi
.
yi = iddata(cumsum(y.y),[]);zi = [yi,u];
Estimate an ARIX model from zi
. Set the name-value pair argument 'IntegrateNoise'
to true
.
sys = arx(zi,[2 2 1],'IntegrateNoise',true);
Predict the model output using 5-step prediction and compare the result with yi
.
compare(zi,sys,5)
ARX Model with Regularization
Open Live Script
Use arxRegul to determine regularization constants automatically and use the values for estimating an FIR model with an order of 50.
Obtain the lambda
and R
values.
load regularizationExampleData eData;orders = [0 50 0];[lambda,R] = arxRegul(eData,orders);
Use the returned lambda
and R
values for regularized ARX model estimation.
opt = arxOptions;opt.Regularization.Lambda = lambda;opt.Regularization.R = R;sys = arx(eData,orders,opt);
Obtain Initial Conditions
Open Live Script
Load the data.
load iddata1ic z1i
Estimate a second-order ARX model sys
and return the initial conditions in ic
.
na = 2;nb = 2;nk = 1;[sys,ic] = arx(z1i,[na nb nk]);ic
ic = initialCondition with properties: A: [2x2 double] X0: [2x1 double] C: [0 2] Ts: 0.1000
ic
is an initialCondition
object that encapsulates the free response of sys
, in state-space form, to the initial state vector in X0
. You can incorporate ic
when you simulate sys
with the z1i
input signal and compare the response with the z1i
output signal.
Input Arguments
collapse all
tt
— Timetable-based estimation data
timetable | cell array of timetables.
Estimation data, specified as a timetable that uses a regularly spaced time vector. tt
contains variables representing input and output channels. For multiexperiment data, tt
is a cell array of timetables of length Ne
, where Ne
is the number of experiments
The software determines the number of input and output channels to use for estimation from the dimensions of the specified polynomial orders. The input/output channel selection depends on whether the 'InputName' and 'OutputName' name-value arguments are specified.
If
'InputName'
and'OutputName'
are not specified, then the software uses the first Nu variables oftt
as inputs and the next Ny variables oftt
as outputs.If
'InputName'
and'OutputName'
are specified, then the software uses the specified variables. The number of specified input and output names must be consistent with Nu and Ny.For functions that can estimate a time series model, where there are no inputs,
'InputName'
does not need to be specified.
For more information about working with estimation data types, see Data Domains and Data Types in System Identification Toolbox.
u
, y
— Matrix-based estimation data
matrices | cell array of matrices
Estimation data, specified for SISO systems as a comma-separated pair of Ns-by-1 real-valued matrices that contain uniformly sampled input and output time-domain signal values. Here, Ns is the number of samples.
For MIMO systems, specify u
,y
as an input/output matrix pair with the following dimensions:
u
— Ns-by-Nu, where Nu is the number of inputs.y
— Ns-by-Ny, where Ny is the number of outputs.
For multiexperiment data, specify u
,y
as a pair of 1-by-Ne cell arrays, where Ne is the number of experiments. The sample times of all the experiments must match.
For time series data, which contains only outputs and no inputs, specify []
,y
.
Limitations
Matrix-based data does not support estimation from frequency-domain data. You must use a data object such as an iddata object or idfrd object (see data).
For more information about working with estimation data types, see Data Domains and Data Types in System Identification Toolbox.
data
— Estimation data
iddata
object | frd
object | idfrd
object
Estimation data, specified as an iddata object, an frd (Control System Toolbox) object, or an idfrd frequency-response object. For AR and ARI time-series models, the input channel in data
must be empty.
[na nb nk]
— Polynomial orders and delays
integer row vector | row vector of integer matrices | scalar
Polynomial orders and delays for the model, specified as a 1-by-3 vector or vector of matrices [na nb nk]
. The polynomial order is equal to the number of coefficients to estimate in that polynomial.
For an AR or ARI time-series model, which has no input, set [na nb nk]
to the scalar na
. For an example, see AR Model.
For a model with Ny outputs and Nu inputs:
na
is the order of polynomial A(q), specified as an Ny-by-Ny matrix of nonnegative integers.nb
is the order of polynomial B(q) + 1, specified as an Ny-by-Nu matrix of nonnegative integers.nk
is the input-output delay, also known as the transport delay, specified as an Ny-by-Nu matrix of nonnegative integers.nk
is represented in ARX models by fixed leading zeros in the B polynomial.For instance, suppose that without transport delays,
sys.b
is[5 6]
.Because
sys.b
+ 1 is a second-order polynomial,nb
= 2.Specify a transport delay of
nk
=3
. Specifying this delay adds three leading zeros tosys.b
so thatsys.b
is now[0 0 0 5 6]
, whilenb
remains equal to 2.These coefficients represent the polynomial B(q) = 5 q-3 + 6q-4.
You can also implement transport delays using the name-value pair argument 'IODelay'.
.
Example: arx(data,[2 1 1])
computes, from an iddata
object, a second-order ARX model with one input channel that has an input delay of one sample.
opt
— Estimation options
arxOptions
option set
Estimation options for ARX model identification, specified as an arOptions
option set. Options specified by opt
include the following:
Initial condition handling — Use this option only for frequency-domain data. For time-domain data, the signals are shifted such that unmeasured signals are never required in the predictors.
Input and output data offsets — Use these options to remove offsets from time-domain data during estimation.
Regularization — Use this option to control the tradeoff between bias and variance errors during the estimation process.
For more information, see arxOptions. For an example, see ARX Model with Regularization.
Name-Value Arguments
Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN
, where Name
is the argument name and Value
is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose Name
in quotes.
Example: 'IntegrateNoise',true
adds an integrator in the noise channel.
InputName
— Input channel names
string | character vector | string array | cell array of character vectors
Input channel names, specified as a string, character vector, string array, or cell array of character vectors.
If you are using a timetable for the data source, the names in InputName
must be a subset of the timetable variables.
Example: sys = arx(tt,__,'InputName',["u1" "u2"])
selects the variables u1
and u2
as the input channels from the timetable tt
to use for the estimation.
OutputName
— Output channel names
string | character vector | string array | cell array of character vectors
Output channel names, specified as a string, character vector, string array, or cell array of character vectors.
If you are using a timetable for the data source, the names in OutputName
must be a subset of the timetable variables.
Example: sys = arx(tt,__,'OutputName',["y1" "y3"])
selects the variables y1
and y3
as the output channels from the timetable tt
to use for the estimation.
Ts
— Sample time
1
(default) | positive scalar
Sample time, specified as the comma-separated pair consisting of 'Ts'
and the sample time in the units specified by TimeUnit
. When you use matrix-based data (u,y), you must specify Ts
if you require a sample time other than the assumed sample time of 1 second.
To obtain the data sample time for a timetable tt
, use the timetable property tt.Properties.Timestep
.
Example: arx(umat1,ymat1,___,'Ts',0.08)
computes a model with sample time of 0.08 seconds.
InputDelay
— Input delays
0 (default) | integer scalar | positive integer vector
Input delays expressed as integer multiples of the sample time, specified as the comma-separated pair consisting of 'InputDelay'
and one of the following:
Nu-by-1 vector, where Nu is the number of inputs — Each entry is a numerical value representing the input delay for the corresponding input channel.
Scalar value — Apply the same delay to all input channels.
Example: arx(data,[2 1 3],'InputDelay',1)
estimates a second-order ARX model with one input channel that has an input delay of three samples.
IODelay
— Transport delays
0 (default) | integer scalar | integer array
Transport delays for each input-output pair, expressed as integer multiples of the sample time, and specified as the comma-separated pair consisting of 'IODelay'
and one of the following:
Ny-by-Nu matrix, where Ny is the number of outputs and Nu is the number of inputs — Each entry is an integer value representing the transport delay for the corresponding input-output pair.
Scalar value — Apply the same delay is applied to all input-output pairs. This approach is useful when the input-output delay parameter
nk
results in a large number of fixed leading zeros in the B polynomial. You can factor outmax(nk-1,0)
lags by moving those lags fromnk
into the'IODelay'
value.For instance, suppose that you have a system with two inputs, where the first input has a delay of three samples and the second input has a delay of six samples. Also suppose that the B polynomials for these inputs are order
n
. You can express these delays using the following:nk
=[3 6]
— This results in B polynomials of[0 0 0 b11 ... b1n]
and[0 0 0 0 0 0 b21 ... b2n]
.nk
=[3 6]
and'IODelay',3
— This results in B polynomials of[b11 ... b1n]
and[0 0 0 b21 ... b2n]
.
IntegrateNoise
— Addition of integrators in noise channel
false
(default) | logical vector
Addition of integrators in the noise channel, specified as the comma-separated pair consisting of 'IntegrateNoise'
and a logical vector of length Ny, where Ny is the number of outputs.
Setting 'IntegrateNoise'
to true
for a particular output creates an ARIX or ARI model for that channel. Noise integration is useful in cases where the disturbance is nonstationary.
When using 'IntegrateNoise'
, you must also integrate the output channel data. For an example, see ARIX Model.
Output Arguments
collapse all
sys
— ARX model
idpoly
object
ARX model that fits the estimation data, returned as a discrete-time idpoly object. This model is created using the specified model orders, delays, and estimation options.
Information about the estimation results and options used is stored in the Report
property of the model. Report
has the following fields.
Report Field | Description |
---|---|
Status | Summary of the model status, which indicates whether the model was created by construction or obtained by estimation |
Method | Estimation command used |
InitialCondition | Handling of initial conditions during model estimation,returned as one of the following values:
This field is especially useful to viewhow the initial conditions were handled when the |
Fit | Quantitative assessment of the estimation, returned as a structure. See Loss Function and Model Quality Metrics for more information on these quality metrics. The structure has these fields.
|
Parameters | Estimated values of model parameters |
OptionsUsed | Option set used for estimation. If no custom options were configured, this is a set of default options. See arxOptions for more information. |
RandState | State of the random number stream at the start of estimation. Empty, |
DataUsed | Attributes of the data used for estimation, returned as a structure with the following fields.
|
For more information on using Report
, see Estimation Report.
ic
— Initial conditions
initialCondition
object | object array of initialCondition
values
Estimated initial conditions, returned as an initialCondition object or an object array of initialCondition
values.
For a single-experiment data set,
ic
represents, in state-space form, the free response of the transfer function model (A and C matrices) to the estimated initial states (x0).For a multiple-experiment data set with Ne experiments,
ic
is an object array of length Ne that contains one set ofinitialCondition
values for each experiment.
For more information, see initialCondition. For an example of using this argument, see Obtain Initial Conditions.
More About
collapse all
ARX Structure
The ARX model name stands for Autoregressive with Extra Input, because, unlike the AR model, the ARX model includes an input term. ARX is also known as Autoregressive with Exogenous Variables, where the exogenous variable is the input term. The ARX model structure is given by the following equation:
The parameters na and nb are the orders of the ARX model, and nk is the delay.
— Output at time
— Number of poles
— Number of zeros
— Number of input samples that occur before the input affects the output, also called the dead time in the system
— Previous outputs on which the current output depends
— Previous and delayed inputs on which the current output depends
— White-noise disturbance value
A more compact way to write the difference equation is
q is the delay operator. Specifically,
ARIX Model
The ARIX (Autoregressive Integrated with Extra Input) model is an ARX model with an integrator in the noise channel. The ARIX model structure is given by the following equation:
where is the integrator in the noise channel, e(t).
AR Time-Series Models
For time-series data that contains no inputs, one output, and the A polynomial order na, the model has an AR structure of order na.
The AR (Autoregressive) model structure is given by the following equation:
ARI Model
The ARI (Autoregressive Integrated) model is an AR model with an integrator in the noise channel. The ARI model structure is given by the following equation:
Multiple-Input, Single-Output Models
For multiple-input, single-output systems (MISO) with nu inputs, nb and nk are row vectors where the ith element corresponds to the order and delay associated with the ith input in column vector u(t). Similarly, the coefficients of the B polynomial are row vectors. The ARX MISO structure is then given by the following equation:
Multiple-Input, Multiple-Output Models
For multiple-input, multiple-output systems, na
, nb
, and nk
contain one row for each output signal.
In the multiple-output case, arx
minimizes the trace of the prediction error covariance matrix, or the norm
To transform this norm to an arbitrary quadratic norm using a weighting matrix Lambda
use the following syntax:
opt = arxOptions('OutputWeight',inv(lambda))m = arx(data,orders,opt)
Initial Conditions
For time-domain data, the signals are shifted such that unmeasured signals are never required in the predictors. Therefore, there is no need to estimate initial conditions.
For frequency-domain data, it might be necessary to adjust the data by initial conditions that support circular convolution.
Set the 'InitialCondition'
estimation option (see arxOptions) to one of the following values:
'zero'
— No adjustment'estimate'
— Perform adjustment to the data by initial conditions that support circular convolution'auto'
— Automatically choose'zero'
or'estimate'
based on the data
Algorithms
QR factorization solves the overdetermined set of linear equations that constitutes the least-squares estimation problem.
Without regularization, the ARX model parameters vector θ is estimated by solving the normal equation
where J is the regressor matrix and y isthe measured output. Therefore,
Using regularization adds the regularization term
where λ and R are the regularization constants. For more information on the regularization constants, see arxOptions.
When the regression matrix is larger than the MaxSize
specified in arxOptions, the data is segmented and QR factorization is performed iteratively on the data segments.
Version History
Introduced before R2006a
expand all
R2022b: Time-domain estimation data is accepted in the form of timetables and matrices
Most estimation, validation, analysis, and utility functions now accept time-domain input/output data in the form of a single timetable that contains both input and output data or a pair of matrices that contain the input and output data separately. These functions continue to accept iddata objects as a data source as well, for both time-domain and frequency-domain data.
See Also
arxOptions | arxRegul | arxstruc | ar | armax | iv4 | idinput | iddata | idfrd
Topics
- What Are Polynomial Models?
- What Are Time Series Models?
- Estimate Polynomial Models at the Command Line
- Regularized Estimates of Model Parameters
- Estimating Models Using Frequency-Domain Data
- Apply Initial Conditions When Simulating Identified Linear Models
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- Deutsch
- English
- Français
- United Kingdom (English)
Contact your local office